10 research outputs found

    An Edge-Cloud based Reference Architecture to support cognitive solutions in Process Industry

    Get PDF
    Process Industry is one of the leading sectors of the world economy, characterized however by intense environmental impact, and very high-energy consumption. Despite a traditional low innovation pace in PI, in the recent years a strong push at worldwide level towards the dual objective of improving the efficiency of plants and the quality of products, significantly reducing the consumption of electricity and CO2 emissions has taken momentum. Digital Technologies (namely Smart Embedded Systems, IoT, Data, AI and Edge-to-Cloud Technologies) are enabling drivers for a Twin Digital-Green Transition, as well as foundations for human centric, safe, comfortable and inclusive workplaces. Currently, digital sensors in plants produce a large amount of data, which in most cases constitutes just a potential and not a real value for Process Industry, often locked-in in close proprietary systems and seldomly exploited. Digital technologies, with process modelling-simulation via digital twins, can build a bridge between the physical and the virtual worlds, bringing innovation with great efficiency and drastic reduction of waste. In accordance with the guidelines of Industrie 4.0 this work proposes a modular and scalable Reference Architecture, based on open source software, which can be implemented both in brownfield and greenfield scenarios. The ability to distribute processing between the edge, where the data have been created, and the cloud, where the greatest computational resources are available, facilitates the development of integrated digital solutions with cognitive capabilities. The reference architecture is being validated in the three pilot plants, paving the way to the development of integrated planning solutions, with scheduling and control of the plants, optimizing the efficiency and reliability of the supply chain, and balancing energy efficiency

    Virtual Asset Representation for enabling Adaptive Assembly at the Example of Electric Vehicle Production

    Get PDF
    Manufacturing companies are confronted with the challenge of adapting to ever-changing requirements of markets in order to remain competitive. Besides the rising number of product variants, increasingly frequent product changes require a continuous adaptation of assembly processes including its work instructions. Adaptive and highly connected agile assembly systems are designed to meet these challenges by enabling the interaction of various assets in assembly. A successful implementation of such Industry 4.0 (I4.0) solutions requires the development of a semantic oriented adaptive framework, which connects the physical with the virtual world. It enables interactive and situation-aware solutions such as Augmented Reality applications to adapt to worker capabilities and to improve worker satisfaction by providing information, based on individual experience, skills and personal preferences. A central part of the adaptive framework is the semantic representation of tangible and intangible assets through a Virtual Asset Representation containing all relevant asset information for adaptive assembly. This paper shows a three levels structure for adaptive assembly implementation, consisting of the adaptive framework level, the Virtual Asset Representation (VAR) ontology level and the use case level. The implementation of an adaptive assembly system is shown in the use case of a rear light assembly process of an electric vehicle in the context of the EU funded project A4BLUE. Based on the gained experiences a critical reflection on target fulfilment and user-friendliness of the VAR is given

    A microservice architecture for predictive analytics in manufacturing

    Get PDF
    Abstract This paper discusses on the design, development and deployment of a flexible and modular platform supporting smart predictive maintenance operations, enabled by microservices architecture and virtualization technologies. Virtualization allows the platform to be deployed in a multi-tenant environment, while facilitating resource isolation and independency from specific technologies or services. Moreover, the proposed platform supports scalable data storage supporting an effective and efficient management of large volume of Industry 4.0 data. Methodologies of data-driven predictive maintenance are provided to the user as-a-service, facilitating offline training and online execution of pre-trained analytics models, while the connection of the raw data to contextual information support their understanding and interpretation, while guaranteeing interoperability across heterogeneous systems. A use case related to the predictive maintenance operations of a robotic manipulator is examined to demonstrate the effectiveness and the efficiency of the proposed platform

    A Cloud-Based Collaboration Platform for Model-Based Design of Cyber-Physical Systems

    Full text link
    Businesses, particularly small and medium-sized enterprises, aiming to start up in Model-Based Design (MBD) face difficult choices from a wide range of methods, notations and tools before making the significant investments in planning, procurement and training necessary to deploy new approaches successfully. In the development of Cyber-Physical Systems (CPSs) this is exacerbated by the diversity of formalisms covering computation, physical and human processes. In this paper, we propose the use of a cloud-enabled and open collaboration platform that allows businesses to offer models, tools and other assets, and permits others to access these on a pay-per-use basis as a means of lowering barriers to the adoption of MBD technology, and to promote experimentation in a sandbox environment

    A hybrid cloud-to-edge predictive maintenance platform

    No full text
    The role of maintenance in the industry has been shown to improve companies productivity and profitability. Industry 4.0 revolutionised this field by exploiting emergent cloud technologies and IoT to enable predictive maintenance. Significant benefits can be obtained by taking advantage of historical data and Industrial IoTstreams, combined with high and distributed computing power. Many approaches have been proposed for predictive maintenance solutions in the industry. Typically, the processing and storage of enormous amounts of data can be effectively performed cloud-side (e.g., training complex predictive models), minimising infrastructure costs and maintenance. On the other hand, raw data collected on the shop floor can be successfully processed locally at the edge, without necessarily being transferred to the cloud. In this way, peripheral computational resources are exploited, and network loads are reduced. This work aims to investigate these approaches and integrate the advantages of each solution into a novel flexible ecosystem. As a result, a new unified solution, named SERENA Cloud Platform. The result addresses many challenges of the current state-of-the-art architectures for predictive maintenance, from hybrid cloud-to-edge solutions to intermodal collaboration, heterogeneous data management, services orchestration, and security

    A Cloud-to-Edge Approach to Support Predictive Analytics in Robotics Industry

    No full text
    Data management and processing to enable predictive analytics in cyber physical systems holds the promise of creating insight over underlying processes, discovering anomalous behaviours and predicting imminent failures threatening a normal and smooth production process. In this context, proactive strategies can be adopted, as enabled by predictive analytics. Predictive analytics in turn can make a shift in traditional maintenance approaches to more effective optimising their cost and transforming maintenance from a necessary evil to a strategic business factor. Empowered by the aforementioned points, this paper discusses a novel methodology for remaining useful life (RUL) estimation enabling predictive maintenance of industrial equipment using partial knowledge over its degradation function and the parameters that are affecting it. Moreover, the design and prototype implementation of a plug-n-play end-to-end cloud architecture, supporting predictive maintenance of industrial equipment is presented integrating the aforementioned concept as a service. This is achieved by integrating edge gateways, data stores at both the edge and the cloud, and various applications, such as predictive analytics, visualization and scheduling, integrated as services in the cloud system. The proposed approach has been implemented into a prototype and tested in an industrial use case related to the maintenance of a robotic arm. Obtained results show the effectiveness and the efficiency of the proposed methodology in supporting predictive analytics in the era of Industry 4.0

    A cloud-to-edge architecture for predictive analytics

    No full text
    Data management and processing to enable predictive analytics in cyber physical systems, holds the promise of creating insight into the underlying processes, discovering criticalities and predicting imminent problems. Hence, proactive strategies can be adopted, with respect to predictive analytics. This paper discusses the design and prototype implementation of a plug-n-play end-to-end cloud architecture, enabling predictive maintenance of industrial equipment. This is enabled by integrating edge gateways, data stores at both the edge and the cloud, and various applications, such as predictive analytics, visualization and scheduling, integrated as services in the cloud system. The proposed approach has been implemented into a prototype and tested in an industrial use case related to the maintenance of a robotic arm
    corecore